Since there are no currently active contests, we have switched Climate CoLab to read-only mode.
Learn more at https://climatecolab.org/page/readonly.
Skip navigation
Share via:
This proposal was forked from Stopping Unstoppable Sea Level Rise in the contest Adaptation 2015

Pitch

Abundant resources can stop disastrous sea level rise due to melting glaciers. The alternative? Permanent loss of cities like Houston.


Description

Summary

We are optimistic humans will eventually gain control over climate change; but before that happens, mitigating efforts should be started to deal with global sea rise – a problem that is already serious and is destined to become much more serious.  Levels of carbon dioxide already in the atmosphere will cause global increases in temperature and sea level with devastating consequences – consequences that will occur even if all fossil fuel emissions stopped today.

The greatest long-term threat of rising seas comes not from Greenland but from Antarctica, where 90 percent of the earth’s ice is found. Melting of that ice would raise sea level by tens of meters.

Wind-driven currents and tides of carbon dioxide-warmed seawater, impinging on the western coast of Antarctica, penetrate the bases of glaciers that rest partially on rocky coastal lands. Melting of glacial ice from the bottom up reduces friction between the glaciers and land. That allows rapid slipping of the glaciers into the sea, where they melt and contribute to global sea rise.

We propose a project to demonstrate how cooled seawater can be directed to the underside of a glacier in Antarctica to slow its melting and slipping. 

The project design specifies strategically located injection wells to be (a) drilled downward into spaces underneath a glacier and (b) used to convey cooled seawater down and under the glacier.

Given Antarctica is the coldest continent on Earth and unlimited volumes of seawater are available on the coast of Antarctica, it is completely feasible to use energy from the strongest winds on Earth to direct cooled seawater in a strategic manner to protect the underside of a coastal glacier.

We explain below how the physics behind this seemingly incredible approach can be applied to create a strategic bottleneck in a channel underneath a glacier – the channel that would otherwise be traversed by warm seawater before it goes about melting the glacier from below.


Is this proposal for a practice or a project?

Project


What actions do you propose?

Quote from National Acadeny of Engineering

Wind-driven currents of seawater and tides, impinging on the western coast of Antarctica (shown in Figure 1, below), penetrate the bases of glaciers that rest partially on rocky coastal lands.  Melting of glacial ice from the bottom up reduces friction between the glaciers and land.  This allows rapid slipping of the glaciers into the sea, where they melt and contribute to global sea rise.

Figure 1 – Amundsen Sea and Glaciers on the West Coast of Antarctica

Amundsen Sea Region

Label for Amundsen Sea Map

Loss of certain key glaciers is of special concern because they hold in place massive ice sheets whose collapse would lead to rise in global sea level of many meters.

There is no question that slowing and preventing melting of ice in Antarctica is a difficult and expensive task.  Such difficulty and expense is negligible compared to the devastating environmental and economic costs that all of us will have to face if we do nothing to slow the pace of glacier melt and continue to allow sea levels to rise around the globe.

We propose that existing resources in Antarctica be employed to slow rapid melting of glacial ice -- melting that is many times faster than normal because of the effects of currents and tides of warmed seawater on the undersides of glaciers. Those resources include (a) energy from winds in the Antarctic region, which are the strongest winds on the planet; and (b) seawater that can be cooled by an atmosphere that is the coldest on Earth.  Even in summer, average atmospheric temperatures above glaciers near the Amundsen Sea in western Antarctica do not rise above minus 10 degrees Celsius. (2)

We propose that injection wells be drilled into strategic locations in a glacier (see Figure 2). Those wells will be used to convey cooled seawater to strategic locations under the glacier to demonstrate how slipping of the glacier into warm seawater can be slowed.  Slowing the melting of ice on the underside of the glacier will reduce loss of friction, thereby slowing the slide of the glacier into the sea.

The glacier chosen for this project, the Pine Island Glacier, is one that has drawn scrutiny from scientists for many decades because of its dynamic characteristics, as described below:

Pine Island Glacier is one of the largest ice streams in Antarctica. It flows, together with Thwaites Ice Stream, into the Amundsen Sea embayment in West Antarctica, and the two ice streams together drain ~5% of the Antarctic Ice Sheet1. Pine Island Glacier flows at rates of up to 4000 m per year. It is of interest to scientists because it is changing rapidly; it is thinning, accelerating and receding, all of which contribute directly to sea level, and its future under a warming climate is uncertain. (3)

Figure 2 – Proposed Injection Well for Glacier Undercut by Warm Seawater


Glacier with Injection Well

Basic Principles Underlying Actions to be Taken

If you have ever entered a building through an entryway with a warm air curtain instead of a door, you know that wintry cold air outside can be kept outside by even a moderate flow of warm air that is strategically directed into the entryway.  

We propose using the same principle, using directed flows of cooled seawater instead of warm air to control how temperatures change. The essential proposed action for this project can be simply described as using a barrier of cooled seawater to stop penetration below a glacier of warm seawater that is melting the underside of the glacier.

The resources to create a barrier of cooled seawater—seawater, cold air to make the seawater colder and denser, and wind energy to power pumping—are readily available in the Antarctic region. Thus, resources would be available to put a barrier in place and maintain it.

The seawater that is melting glaciers is actually not very warm. Near Antarctica, the “warm” seawater is only about 2 degrees Celsius above the freezing point of fresh water.  Cooled seawater that is used for this project is simply warm seawater that has been allowed to cool to about 2 degrees Celsius below the freezing point of fresh water. It will stay liquid as long as it does not fall in temperature much below -2 degrees Celsius.

We do not assume that pumping cooled seawater will be an easy task.  Piping and pumping will need to be closely monitored and controlled to avoid freeze-ups. That task can be done successfully, as has been demonstrated many times in Arctic regions.

Water from the sea will be pumped through pipes onto a nearby glacier. Injection wells will have been drilled down through the glacier and into spaces below the glacier.  Those spaces will contain warm water from the sea that has penetrated underneath the glacier. The pumped seawater -- allowed to become cooled by very cold air surrounding the pipes -- is to be directed downward into the wells and into the spaces below the glacier.  

The cooled water, accelerated downward by gravity, will enter spaces under the glacier and will force warm seawater back outward toward the sea.  Melting of the underside of the glacier by warm seawater will be slowed or stopped.

Trained scientists who are schooled in elementary Newtonian physics can easily understand the process we describe.  But even those without that background can easily grasp certain key elements of the process on an intuitive level:

Anybody who, during a hot summer, has left a small garden hose running overnight on a suburban home's well-watered front lawn will notice the next morning the flow of cool water from the hose has found a pathway downward and horizontally across the lawn, fanning out widely if the lawn is reasonably flat.  The lawn will be mostly soaked, and water will be flowing from the edges of the lawn into the street. If water from the hose continues to run, the lawn will be cooler than it would ordinarily be; and it would stay that way, night and day, for as long as the water runs.

Similarly, cooled seawater that flows downward through injection wells into the spaces under a glacier will flow outward toward the sea.  It will follow outward the same horizontal paths that were followed horizontally and inward by warm seawater when it penetrated into the spaces under the glacier.  Thus, flows of cooled seawater, aided by gravity, will force out and keep out warm seawater. That will slow or stop melting.

Size and Scope of Proposed Actions

We are proposing a pilot project, but the label of "pilot project" can be misleading because it connotes an undertaking that starts small but will lead to a larger project if results justify that step.  This pilot project is not small. However, its large scale is justified by the massive scale of the problem it addresses.  Implementing the pilot project will cost billions of dollars after the project’s design phase, but successful implementation could prevent economic losses from unabated global sea rise that would otherwise reach trillions of dollars. According to a report from the World Bank, just damage to large coastal cities alone could eventually cost $1 trillion every year if cities don’t take steps to adapt. In terms of the overall cost of damage, the cities at greatest risk are Guangzhou, Miami, New York, New Orleans, Mumbai, Nagoya, Tampa, Boston, Shenzhen, and Osaka.  (4)

We have targeted the Pine Island Glacier for proposed actions because it has been judged for decades to be ground zero for threats of massive melting of ice in Antarctica. (5)  In 2014 scientists at NASA described it as inevitably destined to slide rapidly into the sea and melt. (6) Measurably slowing its march toward that destiny would be highly convincing evidence that a process had been identified to buy time (literally a hundred years or more) for humans to bring climate change under control before unabated sea level rise from melting of ice in Antarctica would create unimaginable economic losses and suffering.

Energy to Carry Out Proposed Actions

There are pluses and minuses to the decision to tackle loss of ice from the very large Pine Island Glacier.  On the plus side is how convincing it will be to measurably slow its sliding into the sea.  On the minus side is how much cooled seawater will be needed to be pumped in order to accomplish the task. Drilling injection wells and pumping water will take a lot of energy. Thankfully, an abundant supply of renewable energy from wind is available to be tapped in Antarctica, the windiest place on Earth. (7)

The first step we propose is to identify wind turbines and associated equipment that could reliably be used to produce electricity in the harsh environment of Antarctica. The authors have identified vertical-axis wind turbines that are modular in design for relatively easy transport and installation. These wind turbines have been made to operate reliably in a very cold and harsh environment similar to the Antarctic environment.

No equipment -- wind turbines or any other equipment to be used in the project – would be transported for use in Antarctica without first passing tests that would prove its ability to perform reliably over extended periods of time under the harshest of conditions.

Drilling

Drilling through ice does not require complicated or arcane technology. Humans have done it for hundreds of years.

Recently, Bindschadler et al (8) drilled holes down into the Pine Island Glacier in order to take various measurements on seawater that had penetrated underneath the glacier. That work has produced information that will be very valuable for determining how most strategically to site injection wells on the Pine Island Glacier.

Andrill (Antarctic Geological Drilling), a project involving extensive drilling in Antarctica, has been carried out by an international team of geological scientists since 2006. (9) We expect much of what has been learned about drilling during the course of that project will usefully inform our work.

Effects of Pumping

One very telling effect of pumping will be detection of slightly lowering temperatures in seawater that lies in close proximity to where the sea and the underside of the glacier meet.  If no change is detected, that will serve as a signal that pumping operations need to be intensified or expanded. Detection of pumping results and adjustment of pumping activities will be an essential part of the project. Given the importance of the project, failure to affect sliding rates (the dependent variable) should not be allowed to occur because pumping of cooled water (the independent variable) had not been applied in sufficient volumes. 

Measurement of How Pumping Affects Sliding

We will be able to measure rates of sliding rates very accurately because Global Positioning Satellite (GPS) technology allows very accurate determination of changes in position of glaciers. The gross movement of the Pine Island Glacier can be expected to be measured in kilometers per year, not meters per year. Extensive scrutiny of sliding, using GPS, has been and will continue by numerous international groups.  Scientists from research institutions around the world have made field campaigns to the region and used every airborne and spaceborne tool at their disposal, including satellites launched by NASA and space agencies in Europe, Japan and Canada to make detailed measurements of glacier dynamics. (10)

Absent the pumping operations proposed here, we expect sliding of the Pine Island Glacier to continue unabated. We will make before-and-after comparisons to evaluate the effectiveness of pumping as a means of slowing sliding. It is expected that sliding will be shown to happen at a slower rate after pumping is applied.

We will also measure rates of sliding of other glaciers in the area for comparison with rates of sliding found for the Pine Island Glacier.  We expect those glaciers, not treated with pumped cooled water, will show either no change in rates of sliding or increased rates of sliding.

Parenthetically, this project will provide rich opportunities to gather information about a host of scientific questions. See questions from a glaciologist shown in the Comments sections, comment #4. 


Who will take these actions?

The pilot study will be performed by the Integral Scientific Institute, a nonprofit research organization that is directed by the authors of this proposal. We have found a donor who has offered funding through the design phase of the project, which is now underway.  

We at the Integral Scientific Institute work to provide innovative solutions to problems that are of public concern, especially problems related to environmental sustainability.  The kind of work we are interested in is exemplified by a solution we offered to a thorny problem of water scarcity in the western United States.  That solution was submitted as an award-winning entry in MIT’s CoLab contest for 2014. (11)

At the Integral Scientific Institute, we are developing a unique, coherent paradigm of study and action that focuses on interrelationships between water resources, food production, energy security, transportation efficiency, and climate policy. Achieving an integral understanding of the water-food-energy-transportation-climate nexus is crucial if we are to take responsible actions toward making our social and economic activities compatible with having a sustainable natural environment.

Ultimately, preventing melting of ice in Antarctica and subsequent catastrophic sea level rise will require a monumental effort, perhaps of the magnitude of the Apollo project at the global level.

Developed and developing countries will have to join efforts and resources through the United Nations to make saving Antarctic ice possible. This has already happened, though at a lower scale. In 1991, 39 nations, which are parties to the Antarctic Treaty, signed the Madrid Protocol to ban “any mineral-related activity in the Antarctic, with the exception of scientific activities.” It is a 50-year moratorium that will not be subject to any changes until the year 2041. (12)


Where will these actions be taken?

Siting injection wells in strategic locations on the Pine Island Glacier will take into account how the glacier is being attacked on its underside by warm seawater. (13) The map shown in Figure 3, published by NASA (14), shows – in red – the areas where the glacier is flowing fastest toward the sea.

Figure 3 – Pine Island Glacier and Other Glaciers

Pine Island and Other Glaciers with Warm Water Flow in Red

Too much is unknown at this time to allow specifications about injection wells: (a) how many will need to be drilled, (b) what their pumping capacity should be, and (c) where they should be located. That said, some knowledge of physical laws and examination of the map leads us to the following tentative conclusions:

  1. Placing the wells in locations shown by the darker red area on the map and not too far from the sea (10 km or less) would facilitate pumping of cooled seawater to form a kind of “clot” of dense seawater under the glacier and near the coast. That mass of cooled seawater, strategically located, would serve as a barrier to penetration by warm seawater. Robust pumping of cooled seawater would create a massive, largely inert barrier to even the strong forces of seawater currents and tides that impinge on the coast.
  2. A clot of cooled seawater would not easily diffuse into warmer seawater on its outer (seaward) boundary because waters of differing temperature do not mix easily. (15) Furthermore, the clot would stay effective because continued pumping of cooled seawater would maintain the clot’s strategic presence and position.
  3. The otherwise unstoppable force of the warm sea currents would be made stoppable when it meets an inert mass colder and denser water that would be in place (a) just in front of the glacier and (b) up against the land under the glacier. With an adequate amount of pumping, the clot would create a stand-off force against the otherwise unstoppable penetrating force of warm tides and seawater currents.

 

Warming ocean water has penetrated underneath numerous glaciers on the coastline that surrounds the continent of Antarctica. See the following graphic where red color highlights areas in Antarctica where glaciers are moving toward the ocean at high speeds.

Figure 4 – Areas of Fast-Flowing Glaciers in Antarctica

Pine Island Glacier

According to a 2017 NASA article, “… fewer than a dozen small ice shelves floating on "warm" waters (seawater only a few degrees above the freezing point) produced half of the total melt water [emphasis added]. (16)

Because rapid glacier slipping and melting is constrained to limited areas on the coastline, it is conceivable that continent-wide interventions could be implemented. Specifically, interventions could be undertaken in areas that, together, add up to only about 200 kilometers of Antarctica's 17,268-kilometer-long coastline.

If the proposed intervention on Pine Island Glacier is carried out successfully, it is very likely that similar interventions could be successfully carried out at 10 or so other locations along Antarctica's coastline.


In addition, specify the country or countries where these actions will be taken.

Antarctica


Country 2

United States


Country 3

Canada


Country 4

No country selected


Country 5

No country selected


Impact/Benefits


What impact will these actions have on greenhouse gas emissions and/or adapting to climate change?

Our proposed operations are specified to use renewable energy that is derived from tapping the energy from winds in Antarctica – the world’s strongest. Emissions will be miniscule in comparison with the amount of emissions from the likely alternative – worldwide construction of barriers like levees, seawalls, and dikes.

Barriers will use vast quantities of cement. Producing cement is an energy-intensive process that adds greenhouse gasses to the atmosphere. Production of cement is already one of the most serious contributors of greenhouse gasses. (17)

A comprehensive solution that employs use of barriers would demand costly construction of barriers along many thousands of miles of coast lines. The magnitude of the expense involved can be understood by extrapolating from the costs that are estimated for construction of a single seawall that will protect the financial district in downtown San Francisco. One mile of a six-foot-tall seawall will cost $2 billion. (18)

For a time, coastal flooding from the sea can be stopped by erecting barriers – so long as sea level rise is measured in feet. Unfortunately, unabated global warming will inevitably cause sea level rise to be measured in tens of feet. Building very high barriers on coasts all around the world is not a feasible option. The world does not have resources to spend trillions of dollars on barriers – especially barriers that are sure eventually to fail.

Furthermore, there is another problem with relying upon on the "barriers solution." Torrential rains over land will not be stopped by dikes or seawalls. When seas are high, there will be no place for rain waters to go. They will pool over coastal areas, landward from dikes, seawalls, and the sea. Cities like Houston will drown.

Our proposal contains a more rational approach to adaptation than attempting to build barriers that are impossibly expensive and will eventually fail. However, neither approach will succeed if climate change is not brought under control.

The title of an article published in 2014 was “Adapting to Sea Level Rise Could Save Trillions by 2100.” (19) The flip side of the assertion is that failure to adapt to sea level rise could cost trillions. Though our proposal involves a very expensive project, the billions that might be spent could save trillions.


What are other key benefits?

This project will highlight the kinds of bold thinking and actions it will take to avoid catastrophic consequences of climate change.

Among those aware of threats posed by our changing climate, many feel helpless and hopeless about our ability to avoid its worst consequences.  This project will demonstrate the kind of resourcefulness and determination needed to combat climate change.

It will give hope that wise use of resources will allow humans time to bring greenhouse gas emissions under control while avoiding at least some of the most dire consequences of global warming. Efforts to curb greenhouse gas emissions will have to continue in parallel by transitioning to a more climate-friendly energy policy.  

Long-term, economic resources will not be spent on largely futile efforts to hold back rising seas or to repeatedly reconstruct buildings, roads, and other structures that are damaged by rising seas.  In the United States alone, trillions of dollars in assets would be saved. (16)


Costs/Challenges


What are the proposal’s projected costs?

Estimating costs is difficult because no project like this one has ever been attempted. We will need to address many unknowns that affect costs during the first three years of the project, as described in the timeline shown in a section below.

A slightly similar project was implemented in Japan after the Fukushima nuclear plant accident in 2011. Clean-up staff initiated a long-term project to keep water contaminated by radioactive substances from flowing into the ocean. For that project, a wall of water was frozen in the ground to serve as a barrier to stop contaminated water behind the wall from flowing toward the sea. Although that project didn't yield 100% containment, it is roughly equal in complexity, difficulty, and scope to the project proposed here. The cost of that project in Japan was initially estimated at about $400 million. (20) At completion, the cost was about half the initial estimate. (21) Considering the site of the proposed project, its remote location, harsh conditions, and limited time during the year when work can be done, it would be safe to use a cost factor of 10X applied to the initial estimate of the Fukushima nuclear plant ice wall project. Thus, $4 billion is used as an estimate for the project proposed here.

This pilot project to demonstrate a means to slow melting of ice in Antarctica is feasible but difficult and expensive. Even so, the difficulty and expense will be only a small fraction of the difficulty and expense that will be experienced if uncontrolled melting of Antarctic ice is allowed to cause devastating sea level rise around the globe. The cost of the project will be well justified if a practical way is identified to limit future losses that will otherwise amount to trillions of dollars and cause immense suffering.


Timeline

In 2017, melting of ice in Antarctica is just starting to be a recognized problem by the general public after so many news reports. (22) Therefore, a starting time for the project might, practically speaking, be some years in the future; and our actual "Year Two" might be 2025, 2030, or later, rather than 2019.

Year One -- 2018

Specify design details for the Pine Island Project, based on information collected in past research and surveys. Start to acquire funding for operations in Years Two and Three. Use available data to construct models to predict the glacier’s rate of melting and movement under varying scenarios.

Year Two

Field study, possibly in Alaska or northern Canada, to test equipment, operations, and procedures that will be used in Year Three expedition.

Year Three

Expedition to Pine Island Glacier to determine or confirm (a) best areas for drilling injection wells and placing pipes for bringing seawater to the wells and (b) best place to set up a base camp and best places for installing wind turbines. Drill a few test wells and inject water into them to test the feasibility the project's operations as they have been designed for injecting cooled seawater down into spaces below the glacier.

Year Four

Begin full-scale operations to inject cooled seawater into numerous injection wells. Take temperature readings at various locations to determine the extent of success in flushing warm seawater away from the underside of the glacier. Expand and intensify pumping as needed. Determine the feasibility of continuing operations even during extremely cold and dark winter months.

Years Five and beyond

Operations as needed to effect changes in movement of the glacier. Operations may need to be expanded and intensified if the glacier's movement into the sea has not been (a) measurably slowed from its prior rate of movement and/or (b) relatively slowed when compared with the rates of movement of other glaciers in the area.


About the author(s)

Thomas Manaugh, PhD, majored in psychology and minored in chemistry and biology as an undergraduate at the University of California at Berkeley. He earned his doctorate in medical psychology with a minor in anatomy from the Oregon Health Sciences University. He has been a college educator, a consultant to companies selling environmentally responsible products and equipment, and an inventor who has been awarded four patents, including three dealing with facilitation of production of green energy. He has been a member of several national organizations whose mission has been to protect the environment.

Saïd Majdi received his MS in electrical engineering from the Paris Institute of Technology in Paris, France. He has 30 years of experience in electronic product development and large-scale system design, development, integration and modernization. For the last 20 years, he has focused on advising transportation authorities and operators on ways to achieve operational efficiency through the implementation of cost-effective, climate-friendly Intelligent Transportation Systems (ITS) solutions.

Maria Constanza Cocimano is a Research Assistant at Integral Scientific Institute. She received her MS in Wildlife and Fisheries Sciences from Texas A&M University and her BS in Zoology from Universidad Nacional de Tucuman, Argentina. She has 19 years of experience conducting research in Ecology and Conservation Biology, with a focus in wildlife-habitat relationships. Her interests are effects of environmental changes on the ecology and conservation of endangered species, environment protection, and climate change: its effects, mitigation and social movements.

The Integral Scientific Institute (ISI) is a Dallas, TX based, tax-exempt 501(c)3 nonprofit that was organized to develop a unique, coherent paradigm of study and action that focuses on interrelationships between water resources, food production, energy security, transportation efficiency, and climate policy.


Related Proposals

Glacial Solutions to Climate Change - Geoengineering Workspace - Climate CoLab https://www.climatecolab.org:18081/web/guest/plans/-/plans/contestId/1301414/planId/1316904


References

The references shown below appear also at http://integralscientific.org/unstoppable-references.html. There, the links to references are clickable.